FOUCAULT -LIKE PROPERTIES IN THE FULL -BODY
RELATIVE SPACECRAFT MOTION

DANIEL CONDURACHE!

Abstract The relative orbital motion between the leader and the deputy spacecraft is a
six-degreeof-freedom (6DOF) motion, representing the coupling of the rekativ
translational motion with the rotational one. In recent years, increasing attention has
been paid to the modeling of the relativeDOF motion of spacecraft. Also,
controlling the relative pose of satellite formation is a significant research subject. In
this paper, we reveal a real and dual teismed procedure to obtain exact
expressions for the-BOF relative orbital law of motion between two Keplerian
confocal orbits. Orthogonal real and dual tensors play a very important role, with the
representatin of the solution being, to the author knowledge, the shortest approach
for describing the complete state onboard solution of HOB orbital relative
motion problem. A representation theorem is provided for thebbdy initial value
problem. Furthermre, the real and dual parts are split, and representation theorems
for relative rotation and translation motions are obtained.
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fo = trueanomaly
p: = conic parameter
h. = specific angular momentum of the leader satellite

L(V3,V3) = duattensor set

R = real numbers set
R = dual numbers set

SO5 = orthogonal real tensors set
so; = skewsymmetric real tensor set

SO4 = orthogonal dualensor set
so0; = skewsymmetric dual tensor set
SOR = time depending real tensorial functions

$§: time depending dual tensorial functs

1. INTRODUCTION

The relative orbital motion probleifi! 4] may now be considered classic,
because of so many scientific papers written on this subject in the last few decades.
The model of the relative motion consists in two spacecraft flying in Keplerian
orbits under the influence of the same gravitationahetion center. The main
problem is to determine the state of the Deputy satellite with respect to a reference
frame originated in the Chief satellite center of mass. Thisimential reference
frame, traditionally named LVLH (LocalerticalLocalHorizontal) is chosen as
follows: the C, axis has the same orientation as the position vector of the ChiefOs

center of mass with respect to an inertial reference frame originated in the
attraction center; the€, axis has the same orientation as the Chief orbit angular
momentum; theCy axis completes a righitanded frame. Both, the Chief satellite
and the Deputy satellite will be considered rigid bodies.tNex analysis over the
motion and the state of the mass center of the Deputy inorelaith LVLH is
detailed (Figl).
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Deputy

Chief
Fig. 1! Six-degreeof-freedom spacecraft relative motion

Considerr the position vector of the Deputy mass center in relation with
LVLH. The initial value probem that models the motion of the Deputy satellite
with respect to the LVLH reference frame[§:

R B T G S

#

% +— 3(rc+r)$£3rc:0’ ()
# Jretr| rc

#

2 r(to)=ro.,r (to) ¥ o

where p>0 is the gravitational parameter of the attraction center gd,

represent the rdi@e position and relative velocity vectors of the Deputy spacecraft
with respect to LVLH at the initial moment of timg! 0. In (1) vector! . has the

expression:
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where vector, is expressed with respect to the LVLH frame and has the form:
P To
f(f———~ =
¢ 1+ecod(t) 2 @
and p, is the conic paraeter, h. is the angular momentum of the chie‘fc(t)

being its true anomaly.
Let Q be an element fronsO5, which cenotes the special orthogonal group

of real tensors. The tens@ gives the attitude of Deputy in relation with LVLH.
The initial value problem which has a solution equaRte Q(t) is [5]:
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where ! is the angular velocity of the Deputy in relation with LVLH, is the

angular velocity of LVLH,! is the resulting torque of the forces applied on the
Deputy in relation with its mass centel, is the inertia tensor of the Deputy in
relation with its mass centet, is the angular velocity of Deputy in respect to

LVLH at time ty and Qq is theattitudeof Deputy in respect to LVLH at timg,.

The equationgl) and(4) represent the full body relative orbital motion problem.
Their description is a-©®OF motion of the Deputy in relation with the niorertial
frame LVLH.

The analysis of relative motion dgp@n in the early 1960s with the paper of
Clohessy and Wiltshirg6], who obtained the equations that model the relative
motion in the situation in which the chief spacecraft has a circular orbit and the
attraction force is not affected by the Earth oblessn They linearized the
nonlinear initial value problem that models the relative motion by assuming that
the relative distance between the two spacecraft remains small during the mission.
The Clohessy Wiltshire equations are still used today in rende®vmaneuvers,
but they cannot offer a loAgrm accuracy because of the secular terms present in
the expression of the relative position vector. Independently, Lawdgn
Tschauner and HempdB], and Tschaunef9] obtained the solution to the
linearizedequations of motionvhenthe chief orbit is elliptic, but their solutions
still involved secular termandhad singularities. The singularities in the Tschauner
- Hempel equations were removed firstly by Caft€)] and by Yamanaka and
Anderser11]. Later, the formation flying concept began to be considered, and the
problem of deriving equations for the relative motion with a {wrg accuracy
degree raised, together with the need to obtain a more accurate solution to the
relative orbital motion problerfl]. Gim and Alfriend12] used the state transition
matrix in the study of the relative motion.

The main goal was to express the linearized equations of motion with respect
to the initial conditions, with applications inorfmation initialization and
reconfguration. Attempts to offer more accurate equations of motion starting from
the nonlinear initial value problem that models the motion were made. Gurfil and
Kasdin[13] derived closedorm expression of the relative pasit vector, but only
when the refeence trajectory is circular. Similar expressions for the law of relative
motion starting from the nonlinear model are presentt] jiil4! 16]. The relative
orbital motion problem was also studied from the point of viéwhe associated

<t 3 3t ot
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differential maitfold. Gurfil and Kholshevniko{17] introduced a metric which
helps to study the relative distance between Keplerian orbits. Grr&jhi19]

also introduced a metric between two confocal Keplerian orbits and used this
instrument in problems of asteradd comet collisions.

In 2007, Condurache and Martiny&i, [3] offered the closefbrm solution
to the nonlinear unperturbed model of the relative orbital motion. The method led
to closed formvectorial coordinate freexpressions for the relative lavi motion
and relative velocity and it was based on an approach first introduced 20995
It involves the Lie group of proper orthogonal tensor functions and its associated
Lie algebra of skewsymmetric tensor functian Then, the solution was
generalzed to the problem of the relative motion in a central force f@ld21],

[22]. An inedite solution to the Kepler problem by using the algebra of
hypercomplex numbers was offered23]. Based on this solution and bging the
hypercomplex eccentric amaly, a unified closetbrm solution to the relative
orbital motion was determing@4]. The relative motion between the leader and the
deputy is a sidegreesof-freedom (6DOF) motion which represents the coupling
of the relative translational motion thi the rotational one. In recent years, an
increasing attention has been paid to the modeling of tB®B motion of
spacecraff25! 27]. Also, controlling the relative pose of satellite formation is a
very important research subjdbl, [28]. The common approach is to consider the
relative translational and rotational dynamics for the ethgfuty spacecraft
formation to be modeledsing vector and tensor formalism.

The present approach offers a tensor procedure to obtain exact expressions
for the relative law of motion and the relative velocity between two Keplerian
confocal orbits. The solution is obtained by pure analytical metudig holds for
any chief and deputy trajectories, without involving any secular terms or
singularities. The relative orbital motion is reduced, by an adequate change of
variables, into the classic Kepler problem. It is proved that the relative orbital
motion problem is super integrable. The tensor plays only a catalyst role, the final
solution being expressed in a vectorial form.

To obtain this solution, oneustknow only the inertial motion of the chief
spacecraft and the initial conditions of thepatg satellite in the locaverticat
locakhorizontal (LVLH) frame. Both the relative law of motion and the relative
velocity of the deputy are obtained, by using the tensor instrument that is
developed in the first part of the paper. Another contribusdhe expression of
the solution to the relative orbital motion by using universal functions, in a
compact and unified form. Also, a representation theorem is presented, this
theorem allows the problem of finding the attitude of the Deputy in relation to
LVLH to be solved as Euler fixed point classical problem
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2. MATHEMATICAL PRELIMI  NARIES

The key notions that are studied in this Section are proper orthogonal
tensorial maps and a Sundrdde vectorial regularization, the lattertinduced
via a vectorial change of variable. The proper orthogonal tensorial maps are related
with the skewsymmetric tensorial maps via the Poisfdarboux equation. The
results presented in this section appeared for the first tinj20jn The section
related to orthogonal tensorial maps over a powerful instrument in the study of the
motion with respect to a nenertial reference frame.

We denoteS035 the set of maps defined on the set of real el with

values in the set of proper orthogonal teassiD; .
S@?z{R:R—) 0¥ |RR" = I3,detR=1}. ®)

We denotesof the set of maps defined on the set of real numBensith
values in the set of skesymmetric tensorsoX :

s0f ={@:R > s0f|6" -6} (6)

We denotel5® to be the set of applications that can be owith valuesin
the free vectors set with dimension 3, namely
Theorem 1:The initial value problem:

A+1Q =0Q ()= 3 (7)

has a unique solutio@ e SO5 for any contineus mapd! so3 .

Proof: Let Q be the solution of(7) and denote byQ’ its transpose.
Computing

£(00")=00" +00T =0s0™ 1 00 ™= 0 ®)
it follows that:
QQ" =QQ (to) = . (9
Since Q=Q(t) is a continuous magt! ty, it follows thatdet(Q) is a continuous

map too.From Eq.(8) it results det(Q) [-1,1]. Since det(Q(ty))=detl; =1, it
follows that
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'QQ =13,

fdet(Q) =1, (19

thereforeQ e S@EQ,R is a proper orthogonal tensor map.

Equation(7) represents the tensor form of the PoisBamboux equatiof29], [30].
Its solution will be denoted, ,, . It modes the rotation with instantaneous angular

velocity ! w(w is the vector map associated to the skgwmetric tensoeb ). The

link between them is given byix= ! x, VxeV3 ; where Vs is the three

dimensional linear space of free vectors arid3denotethe cross product.
The inverse (in this case the traose) of tensoiR_, is denoted:

T -

Theorem 2 The tensor maf-, satisfies:
.F, isinvertible andF' ' =F";
FLUlF u=uly, " u, v V3R;
 |Fiu|=]u|,VueVs;

. F (uxu)=F uxfF v,vu,veVs;

a A~ W DN PP

.%F! =F (U+! tu)" @V 3, differentiable

2
6.%Fw=|:w(u+2wnu+ o (¢ W & u)#u V.
If vector | has fixed direction, given by the unit vector ! =! (t)u with ! a

continuous real value map, the PoisseDarboux equation6) has the explicit
solution:

Ry =I5 ! (sidt )+ (1 cds u?, (12)

where! (t} :,J;,E (s)ds.

Following from Eq (11), if vector! is constant and nonzero, the solution
to the Poissoiarboux equation is written as:

12

Ry =131y (1t %* Ny, G (t %)!E&' (13
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We introduce a vectorial operator which is related to the angulaciteks
of the reference frame to whom an arbitrary vector is related. It is a deriik&on
operator and its use will be revealed further.

We define operatof ) 1V ! VR by
Q

()=()ror(): 19

For an arbitrary vectorial map:R! V3R, it will hold:
u'=l+! lu . (15
The next results present the properties of this operator, together witmkhe i

between( ) and F, .

Lemma 1.The following affirmations hold true:
.14

2. (u+v) =ul+v.,(#)uv" CZ(V3R);

w

-
S(ru)=rte 1@) (  C*(VR)( ) $R R, differentiable
S(utv) =ug veu v Ju Cz(ng);

5. ufv+ulv =0 v +u v =%(u M),(")u,v# CZ(VgR);
6.u=l+20 1UH H( Lul M ouf )8 YLZ( 3R);

7. S(Ru)=F (W,( ) c?(vE):

8. Fyul, =u(to)i 5 (Fon)l, =4(to) +o(to) ! u(ty).
Lemma 2.Let U:R, —>V3R be a differential vectorial valued map such as:
u'=0,u(s) =up. (16)
Then
u=Re U, 17
where R, , is the stution of the initial value probler(v).
Proof. From%(R!-- up)=R ug=!"R uy results%(R!-- up)+o#R up=0.

The solution of the Cauchy problgiiB) is u=R_, u,.
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Remark 1. From Lemma 2 it results that if a vectorial mapR , ! V3R satisfies
u!'=0, then vectoru is the rotation with the andar velocity —! of a constant
Ug =u(t0). It will be useful in giving a geometrical interpretation for the prime
integrals that occur in the twioody problem in the neinertial reference frenes.

3. CLOSED-FORM SOLUTION TO THE RELATIVE
ORBITAL MOTION PROBL EM BTRANSLATION PAR T

In this section we present the clogedn, coordinatdree exact solution to
equation(1). In the initial value psblem(1), we make the change of variable:

r.=F, (r+r), (18
wherer, is the solution of the initial value problem:

LR+ 20 "+l 10,
] (trd

# " L
% +!!C rc$ r—3l’c—0, (19)
# c

B ore(e)=rln. ()=
After some algebra, it follows that:
b =F,, {(k+re)+20cx(F+re)+ocx(ox(r+rg)+d x(r+r.)} (20)
and furthermore:
fo=F 20 (S s

21
A DRUE IR R S N (RN o R e @y
Using equationgl) and(19) we obtain:
" #
=R, Shree—t v ) ekt Y= tg o re) (22)
c Ir+r| e (% fr |
which leads to:
i +Er. =0 23

1A

The initial conditions for equatio(23) are deduced by taking into account
F. ()=, equation(5) andTheorem 2
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def
r(t)=srd+,=.2, (24)

b (1) =v2+vg +1 (1) 1T, =1, 29
wherer? =r (t,)iv o =r! (t,) +! (to)!r 2.
From(18) and(11) we deduce:
r=R,r Ir.. (26)

The solution to the relative orbital motion problem, described by the initial value
problem(1) is:

r=R, r.1— P e 27
Het T 1+e.cod, (1) 10
h —|l'nf°hc+1 $°hé ith fO="f.(t)! f.(t,), is th
where R, =1;!si CE ( co C)h_2 with fo = C() c(o), is the
C
solution of equatioi{7) wherer, is the solution to the initial value problem:
I'!! +£3r! =0;
f (28)

r (to) =rrd (to) =11 °
and the relative velocity may be computed as:

ec|l’-1¢|sinfc(t)£

V:R!!Cﬁ!!R!!J! 0"
Pc fc

(29)

This result shows a very interesting propet the relative orbital motion problem
(2). We have proven that this problem is suipéegrable, by reducing it to the
classic Kepler probler28). The solution of the relative orbital matigproblem is
expressed thus:

r=r(ttof o¥ o),

v=v(t,to,roV o). (30

Next we present the explicit solution to the relative orbital motion by Battin
universal functions. Let U,,k={0,1,2,3, U, =U,(!' )be the universal

functions defined ifi31] with:
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il
m#-L —=#u$

(3D

and" a Sudmaslike independent universal variable that satisfies:
d _ 1 "
a —ﬁ e (32

Then, the solution to #hinitial value problen28) may be expressed as:
%

’ # r 00
r =guo+iouzjr! Ul‘ ‘+U2 & Erao (33)
I /
and the magnitude of the solution is:
||H‘ O
n =‘V!O‘Uo T Uy +U». (34
The velocity of the motion gmzrned by equatio(QS) is:
b= $\/E

‘+o/4$ U2 r{gL (35

I
Then, using(26) and (29) together with(33) ard (35), the solution to the initial
value problen(1) may be written as:

% & |y om0 (3
r=Re_ iqEu " 1u2n uluwz%ﬂo) "
N 5 BN 3) (36)
" Pc £
1+eccosc(t) rQ”

while the velocity vector is
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# 0 $
V=R, " ﬂUlr!—o*' ()):i" nlU 2*§OE"

e ‘r! ‘
"IeRey g?#uo" ioU 2€$r!°+ )(ﬁlm+ U 2"!0 1!*0:(?% 03: 37)
g U LW S

" € |hc|SinfC (t) r((:)

Pc rd

where fc. is the true anomaly of the chief spacecraft and

I e o\hc® <o
Rip, =1t sinfo 5+ (I cosf, )— with & =fe(t)! fc(to).

c he?
The universal functionsl, arelinked by a Kepletike equation31]:
0 g0
(" to)= Uafe 8 )|l Uofe 8 )r!\/%b + Ut $). (38)

Equation(37) and(38) offer the closedorm compact solution to the relative
orbital motion prol@m. They hold for all types of reference trajectories of the chief
(elliptic, parabolic, hyperbolic) and deputy (elliptic, parabolic, hyperbolic,
rectilinear).

4. EXACT SOLUTION TO TH E RELATIVE ORBITAL
MOTION PROBLEM - ROTATIONAL PART

In this section we give a representation theorem for the te@$dBO§

which parametrizes the rotation of the Deputy around its mass center, motion that
is recovered from the initial value probl€d).
For (4), consider the following change of variable:

LT W ). 39

This change of variable leads to
N=Q'T( W cr T(W+1cQ="t ™" ( @ )+ T(!+!¢). The result is
equivalent with!!, T cI" I+11+1¢) or

e * 1+ 1QE 1. (40
After some steps of algebraic calculus, fr(88), (40) and(4), results that
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M4 ;=
&1 (10)Q 5 ( o clto))

where!, = is the inbody torque related to the mass center in the body frame

of Deputy. Equatiorf4l) is a Euler fixed point classic problem.Qfis the stution
of (4) then:

(41)

T

¢ Q=1Q,
#
$Q(to)=Qo-

Making use of (39), results tha®! , 2 + . If the !

(42)

operator is used the

previous calculus is transformedanQ! , 2 '+ 1 1 Q'Q T=QQ T H"¢.
After multiplying the last expression 1§, we obtain the initial value problem:
50=Q" #Q |

& Olto)=0 “

Using the variable chang®9), the initial value problenfd4) has been decoupled
into two distinct initial value problem@1) and(43). ConsideringQ=R, _Q, a

representation theorem is valid.
Theorem 3 The solution of4) results from the application oR,, _ to the

solution of the classical Euler fixed point problem:

© & =qn,
L @ Qti.
# JL 4, B "=,

B t) Q[ o clto)),
)

ﬁ Q (to) = Q.

(44)

5. RIGID BODY MOTION PA RAMETERIZATION USING
DUAL LIE ALGEBRA

The key notions that will be presented in this section are dual tensorial and
vectorial parameterizations that can be usegroperly describe the rigidody
motion. We discuss the properties of proper orthogonal dual tensorial maps.
Orthogonal dual tensorial maps are a powerful instrument in the study of the rigid
motion with respect to an inertial and rioertial referencdrames. More on dual
numbers, dual vectors and dual tensors can be foyBa!89].

Let the orthogonal dual tensor set be denoted by:

0, ={R! L (V5 Vs)|RR™= 1,def } (45
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where SOz is the set of speciabrthogonal dual tensors and is the unit
orthogonal dual tensor.
The internal structure of any orthogonal dual tenBdr SO, is illustrated in a
series of results which were detailecbur previous worf34], [35], [40].

Theorem 4.(Structure Theorem}zor any R! SO5 a unique decomposition
is viable:

R=(1+11Q, (46)

whereQ! SO5; and! ! V5 are calledstructural invariants.

Taking into account the Lie group structure D, and the result presented
in previous theorem, it can be concluded that any orthogonal dual tBhs80,

can be used globally parameterize displacements of rigid bodies.
Theorem 5 For any orthogonal dual tensoR defined as in Eq46), a dual

number!=1!+" d and a dual unit vectou =u +!uy can be computed to have
the following equatiofi34], [35]:

R(L,uF I+ sih & (1 dos)& exp_d). (47
The parameters and u are called thenatural invariants of R. The unit dual
vector u gives the PIYcker representation of the Mdzalses axi§33], [41].
while the dual angld =!+" d contains the rotation angle and the translated
distanced .
The Lie algebra of the Lie grouO, is the skewsymmetric dual tensor set

denoted by so, ={g! L(\13,\13)(1="! !_T}, where the internal mapping is

Hil'”—2"$-'!: !_1_2 .
The link between the Lie algebi$o,, the Lie groupSO,, and the exponential

map is given by the following.
Theorem 6. The mapping
exp: 9! B,

Lok (48)

exp(l)=¢" =" =
p(L)=e =" 4
is well defined and surjective.

Any screw axis that embeds a rigitbplacement can be parameterized by a
unit dual vector, whereas the screw parameters (angle of rotation about the screw
and the translation along the screw axis) can be structured as a dual angle. The
computation of the screw axis is linked with the peab of finding the logarithm

of an orthogonal dual tensét, which is a multifunction defined by:
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log:30,! D,

ogR={1 1 o, ex{! }R_} (49

and is the inverse of E{44).
Based onTheorem 5 and Theorem 6, for any orthogonal dual tensd®, a

dual vector! =lu = +/ can be computed and it represents the Euler dual
vector, whicH embeds thersw axis and screw parameters. The fornh_oifmplies
that! ! loR .
Also, if ! | <2/ , Theorem 5 and Theorem 6 can be used to uniquely recover
the Euler duaVvector! , which is equivalent with computinipg R.
Next, weOll introduge the isomorphism between the Lie g8 and the Le
group SO, [42].

Theorem 7.(Isomorphism Theorem)fhe special Euclidean grou(SEg,!)
and (SO,,!) are connected via the isomorphism of the Lisugs:

l: SE3! SOg,

Lg)=(1 +1'Q,

1Q !
whereg = , 11 SO5, I'1 Vs,
gﬁf@l% 3 3

(50

The Lie algebrase(s) and V; are connected via the isomorphism of the Lie

algebras:
lse(3' Vs,

1w, &5
P I RVA
where#:ﬁ) 0 1l so5,VV 3.
Proof: For anyg;, g,! SE 3, the map defined in E@1) yields
(0102) % (o (g2). (52
Let R! SO,. Based orTheorem 4 which enstes a unique decomposition, we
I I
can conclude that the only choice fgr, such that (g)=R is g =%§) L& This
9 (

underlines that is a bijection and keeps all the internal operations, wiesnd
I are denoted ast structural invariant of the orthogonal teQsor
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For any P9 sg 3, the mapping defined by EEI1) verifies the
identity
#(181 9 L= Jou(0). (59

O N L VL
Also, for any! ! V;, ! 4 ! | there is only determine@z?ﬁ) 0 9 such that

! ('6): | .Thus,! is a bijective mapping.

Remark 2: The inverse of is

11 S0, Fi ' YRF O/Q !](#‘, (54)

whereQ=Re(R),! = vecf D{R)!Q).

6. FOUCAULT -LIKE PROPERTIES OF RIGID BODY
MOTION IN ARBITRARY NON-INERTIAL FRAME

To the authors' knowledge, in the field adtrodynamics there aren't many
reports on how the motion of rigid body can be studied in arbitraryimestial
frames. Next, we proposed a dual tendmrsed model for the motion of the rigid
body in an arbitrary nemertial frame. The proposed methellides the calculus
of inertia forces that contributes to the rigid body relative state. So, the coordinate
free state equation of the rigid body motion in an arbitraryinertial frame will
be obtained.

Let Rp and R: be the dual orthogonal tensors which describe the motion of two
rigid bodies relative to the inertial frame.
If R is the orthogonal dual tensor which embeds the six degree of freetiiive

orbital motion of rigid body D relative to rigid body C, then:
R=RCRo- (55)
Let ! - denote the dual angular velocity of the rigid body C angl the

dual angular velocity of the rigid body D, both being related to inertial reference
frame. In the following, the inertial motion of the rigid body C is considered to be
known. If I is the dual angular vetgty of the rigid body D relative to the rigid

body C, then, conforming wit{s5):

L4 pll _c. (56)
Considering! B being the dual angular velocity vectof the rigid body D in the
body frame, the dual form of the Euler equation gived #j results that:



17 Foucaulilike properties in the fulbbody relative spacercraft motion 223

U
MIB+ Bim _B= B (57)

In (57) 1B=FB+1 B whereF® the force applied in the mass centre ariis
the torque. Also ir{57), M represents the inertia dual operator, whichiven by

M= mD;I—II +1J , whereJ is the inertia tensor of the rigid body D related to its
mass center andmp is the mass of the rigid body D. Combining

d 1 .
M't=3" 1 =) with (5 Its:
M 7 —~ with (57) results
£B+M”(_B" M_B)= M' LB, (58)

Considering thatt , =R_B the dual angular velocity vector can be computed
from

L =R B! ¢, (59
this through differentiation gives:
HALoR! R 1D (60)
If the previous equation is multiplied g™, then
RT(L4!c)=RMR §+! 57, (61)
which combined withB =IR generates:
RT(L+4!c)=RTIRIE+!E. (62)
After a few steps, equatiq6?) is transformed into
B4l =RIGH ! c, (63)
which combined with{58) gives:
t4lc=RM'" BIRM I Bim Bl . (64)
Becausel p =R"(_M_¢), the final equation is:
m4lo=RMO BIRT(L+ )8 MRT(_+ 1ch S _c. (65)
The system:
" R=I'R
AL RM TR T(L o)
% SMRT(L+Lc)+ 1S (66)
#  (to) 2 _b,_0&Va,

# R(to) = Ro, Ry& SO,
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is a compact form which can be used to model tBO& relative motion problem.

In the previous equation the state of the rigid body D in relation with the rigid body

C is moetlled by the dual tensdR and the dual angular velocities field. This

initial value problem can be used to study the behavior of the rigid body D in

relation with the referencedme attached to the rigid body C. (66), all the

vectors are represented in the body frame of C, which shows that the proposed

solution is onboard and has the property of being coupléd amd ! .

Next, we present a procedure that allows the decoupling of the proposed solution.
Theorem 8. (Representation Theorenijhe solution of66) results from the

application of the tensoR _ to the solution of the classical dual Euler fixed

point problem:

) B! =B£!l

gML +_ $M "=,

0

if Li(to)2 o, (67)

ﬁ R (to)=Ro,
where
1o :Bg(_o!‘*_c(to)),B o:(I "‘"'!c(to))Bo, 1, =Rz,
and R_, itOs the unique solution of the dual replica of Poissanoux
eguation

Proof:
In order to describe the solution (66), we consider the following change of

variable:
0.=R" (0+ac). (69)

This change of variable leads to
b, =R (0+0c)+R (b+b.)=-R"! (0+0c)R " (b+b.). The result is
equivalent with!l, =R"{_c!" 1+11+! ) or
oc" ot d+ b= Rb, . (69
After some steps of algebraic calculus, fr(88), (69) and(65), results that:
{M L4 _oxM =,

L, (to) =, (70
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Where !, =R"!_is the dual torque related to the mass center in the body frame of
the rigid body D and P =Ry {_ o™ _c (to)). Equation(70) is a dual Euler fixed
point classic problem.
For any R! @5 , the solution of66) emerges from

b R=IR

H oo\,

§R(to) = Ro.

|

Making use of(68) results thatR! , & 4+ . If *

(71)

operator used the previous
calculus is transformed intoR!, 2 "#".RIR",_RR' & "..  After
multiplying the last expression by, we obtain the initial value problem:
EE=_R£* TR_,
% R(t)=Ro.

Using the variable chandé8), the initial value problen66) has been decoupled
into two distinct initial value problem@@0) and(72).

Let R # @? be the unique solution of:
¢ R+I'R =0,
ER(t0) = 1 % (to).
ConsideringR=R- _R , a representation theoresfithe solution of Eq(66) can
be formulated. )

(72)

(73

7. ADUAL TENSOR FORMUL ATION OF THE SIX DEG REE
OF FREEDOM RELATIVE ORBITAL MOTION PROBL EM

The results from the previous chapter will be used to studyixitegrees of
freedom relative orbital motion problem using dual algebra.
This problem is also quite important, due to its numerous applications: spacecraft
formation flying, rendezvous operations, distributed spacecraft misgipnf],
[10!12], [26], [44].

The model of the fulbody relative motion consists in two spacecraft flying
in Keplerian orbits due to the influence of the same gravitational attraction center
(Figure 1). The main problem is to determine the pose of the Deputy satellite with
respet to a reference frame originated in the Leader satellite center of mass. This
norrinertial reference frame, traditionally named LVLH (Lo¥articalLocal
Horizontal). The angular velocity of the LVLH is given by the vectey, which

has the expression:
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h 11+ ec cosfo( )"
! =f—9:% = : (74)
c=ftc he 2 C 4(% Pe ﬂi‘ C
where vectorr¢ is:
0
r
re = Pe =, (75)

1+ec cosfe(t) 1
where pc is the conic parametehc is the angular momentum of the Chief,
fc (t) being the true anomaly are is the eccentricity of the Chief.
We propose dual tensebssed modeldr the motion and the pose for the mass
center of the Deputy in relation to LVLH. Both the Chief satellite and the Deputy
satellite can be considered rigid bodies.
Furthermore, the time derivative of is:
ec|h¢|sinfc( 9 rd
Pc i
In order to a easier to read the list of notations,tfet, there will be used
the followings:

bc = (76)

2
I1+ sf
gzt e ooy, @
% Pc &
ec|hc|sinfe( to) rd
|!8= C| C|pC C( )é 79)

r
Where— is the unity vector of the Jéxis from LVLH.

e
The full-body relative orbital motion is described by the (&6). where the dual
angular velocity of the Chief satellits: i

Led cHt(!d+ " o (79
and the dual torque related to the mass center of Deputy satellite is:
_ M '
I =1 retr )+ .
! |%HPU ) (80)

The representation theorenThgorem 8) is applied in this case using the
conditions(76)-(79), the solution of the Poissd?marboux probleng73) is:

R =(11" glgm 1 mﬁ)tzg (81)

In (81), we've notedh, =||h.|| and 2 = f(t)! fc(to).
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Theorem 9. (Representation Theorem of the full body relative orbital
motion). The solution o{66) results from the applideon of the tensorR;- _ from

(81) to the solution of the classical dual Euler fixed point prob{éw).

7.1. The rotational and translational parts of the rehtive orbital motion

Consider first the real part ¢86). This leads to an initial value problem:
) 0=rq
# 41, =Q3' QTSI QI(1+ )%
WQT (I ¥ ) ! %, (82
I (to)2 b, o' V3
Q(to)=Q0, Q" SO3
which has the solutio® = Q(t), the realtensorQ being the attitude of Deputy in

relation to LVLH. In(82), ! is the angular velocity of the Deputy in relation to
LVLH, ! . is the angular velocity of LVLH] is the resulting torque of the forces

applied on the Deputy in relation to its mass cenlers the inertia tensor of the
Deputy in relation to its mass center,, is the angular velocity of Deputy in

respect to LVLH at timet, and Q, is the orientation of Deputy in respect t
LVLH at time tg.

Consider now the dual part of E@6). Taking into account the internal
structure of R, which is given by(47), after some basic algebraic calculus we

obtain a second initial value problem that models the translation of the Deputy
satellite mass center with respect to the LVLH reference frame:

W2l T (g iy

it H 3 otk

#

% +—- 3(rc+r)$£3rc=0, (83
# o |re+r| re

4 r (to) =ror! (to) = o

where p>0 is the gravitational parameter of the attraction center eyd,
represent the relative position and relative velocity vectors of the mass center of the
Deputy spacecraft with respaotLVLH at the initial moment of time, ! 0.
Based on theepresentation Theorem 9the following theorem results.
Theorem 10. The solutions to problen{82) and(83) are given by
Q=R- @,

84
r=Re g !'re, (89



228 Daniel Condurache 22

where Q, and r, are the solutions of the the classical Euler fixed point problem
and, respectively, Kepler's problem

©G=Ql,

#JII 4+ 3 !":! ,
0,
A1 ()R 3( o clto)) 9
g Q' (tO):QO’
and
;«__ H! +£3r! =0,
# f
g r (to) =r¢ + o, (86)
h (to) =02 +v o +1 0o 21+ 0),
g
where
2
Ry =11 S|nf0|ll'—i|+ (1 cosf )ﬁcz (87)

andr. is given by Eq(75).

Remark 3: The result displayed iTheorem 10 gives a very meaningful
insight on the motion of any rigid body with respect to a-imential frame. A
straightforwward method to approach its motion is reveaedollows: (i) The
problem is solved in an inertial frame, that is our-imanrtial frame OfrozenO at the
initial moment of time; (ii) The solution to the namertial problem is obtained by
applying tensoiR;+ _ to the stution obtained at the previous step (i).

This insight reveals that in fact any rigid body motion with respect to dneotal
frame is a Foucault penduldilke motion, the same type that is comprehensively
studied in [22].

Remark 4: The problem¢82) and(83) are coupled because, in general case,
the torque! depends of the position vector
The exact closed form, cabnatefree, solution of the translational motion can be
found in[2! 4], [22], [45].

8. CONCLUSION

The present paper develops new methods for recovering a solution property
to the full body relative orbital motion problem in a Keplerian field. A
representation theorem is provided for the full bodyiahvalue problem, using
dual Lie algebra of dual vectors. For this, the isomorphism between the Lie group
of the rigid body displacements and the Lie group of the orthogonal dual tensors is
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used. Furthermore, the representation theorems for the ropatiband translation

part of the sixdegreeof-freedom relative motion in a nenertial reference frame

are obtained. The core result of the paper offers a meaningful insight and a natural
geometrical interpretation of the motion, namely that it is it dacived from the
motion in a weldefined inertial frame which is seen through a transform that
depends solely on an orthogonal tensor that models the behavior of timeriah
frame.The obtained results interest the domains of the spacecraft fomfiging,
rendezvous operation, autonomous mission and control theory.

Received on December 21, 2020
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