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FOUCAULT -LIKE PROPERTIES IN THE FULL - BODY 
RELATIVE SPACECRAFT MOTION  

DANIEL CONDURACHE1 

Abstract. The relative orbital motion between the leader and the deputy spacecraft is a 
six-degree-of-freedom (6-DOF) motion, representing the coupling of the relative 
translational motion with the rotational one. In recent years, increasing attention has 
been paid to the modeling of the relative 6-DOF motion of spacecraft. Also, 
controlling the relative pose of satellite formation is a significant research subject. In 
this paper, we reveal a real and dual tensor-based procedure to obtain exact 
expressions for the 6-DOF relative orbital law of motion between two Keplerian 
confocal orbits. Orthogonal real and dual tensors play a very important role, with the 
representation of the solution being, to the author knowledge, the shortest approach 
for describing the complete state onboard solution of the 6-DOF orbital relative 
motion problem. A representation theorem is provided for the full-body initial value 
problem. Furthermore, the real and dual parts are split, and representation theorems 
for relative rotation and translation motions are obtained. 

Key words: Dual number, Dual tensor, Six-degree-of-freedom relative orbital motion, 
Spacecraft motion. 

Abbreviations 
 = real number 
 = dual number 
 = real vector 
 = dual vector 
 = real tensor 
 = dual tensor 
 = real vectors set 
 = dual vectors set 

= time depending real vectorial functions 

= time depending dual vectorial functions 
 = skew-symmetric dual tensor corresponding to the dual vector  
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 = true anomaly 
 = conic parameter 
 = specific angular momentum of the leader satellite 

 = dual-tensor set 

 = real numbers set 
 = dual numbers set 

 = orthogonal real tensors set 
 = skew-symmetric real tensor set 

 = orthogonal dual tensor set 

 = skew-symmetric dual tensor set 

= time depending real tensorial functions 

= time depending dual tensorial functions 

1. INTRODUCTION  

The relative orbital motion problem [1! 4] may now be considered classic, 
because of so many scientific papers written on this subject in the last few decades. 
The model of the relative motion consists in two spacecraft flying in Keplerian 
orbits under the influence of the same gravitational attraction center. The main 
problem is to determine the state of the Deputy satellite with respect to a reference 
frame originated in the Chief satellite center of mass. This non-inertial reference 
frame, traditionally named LVLH (Local-Vertical-Local-Horizontal) is chosen as 
follows: the  axis has the same orientation as the position vector of the ChiefÕs 
center of mass with respect to an inertial reference frame originated in the 
attraction center; the  axis has the same orientation as the Chief orbit angular 

momentum; the  axis completes a right-handed frame. Both, the Chief satellite 

and the Deputy satellite will be considered rigid bodies. Next, an analysis over the 
motion and the state of the mass center of the Deputy in relation with LVLH is 
detailed (Fig. 1). 
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                    Fig. 1 ! Six-degree-of-freedom spacecraft relative motion. 

Consider  the position vector of the Deputy mass center in relation with 
LVLH. The initial value probem that models the motion of the Deputy satellite 
with respect to the LVLH reference frame is [3]: 

 (1) 

where  is the gravitational parameter of the attraction center and  
represent the relative position and relative velocity vectors of the Deputy spacecraft 
with respect to LVLH at the initial moment of time . In (1) vector  has the 
expression: 

, (2) 

where vector  is expressed with respect to the LVLH frame and has the form: 

 (3) 

and  is the conic parameter,  is the angular momentum of the chief,  

being its true anomaly. 
Let  be an element from , which denotes the special orthogonal group 

of real tensors. The tensor  gives the attitude of Deputy in relation with LVLH. 

The initial value problem which has a solution equal to  is [5]: 
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 (4) 

where  is the angular velocity of the Deputy in relation with LVLH,  is the 
angular velocity of LVLH,  is the resulting torque of the forces applied on the 
Deputy in relation with its mass center,  is the inertia tensor of the Deputy in 
relation with its mass center,  is the angular velocity of Deputy in respect to 
LVLH at time  and  is the attitude of Deputy in respect to LVLH at time . 
The equations (1) and (4) represent the full body relative orbital motion problem. 
Their description is a 6-DOF motion of the Deputy in relation with the non-inertial 
frame LVLH. 

The analysis of relative motion began in the early 1960s with the paper of 
Clohessy and Wiltshire [6], who obtained the equations that model the relative 
motion in the situation in which the chief spacecraft has a circular orbit and the 
attraction force is not affected by the Earth oblateness. They linearized the 
nonlinear initial value problem that models the relative motion by assuming that 
the relative distance between the two spacecraft remains small during the mission. 
The Clohessy - Wiltshire equations are still used today in rendezvous maneuvers, 
but they cannot offer a long-term accuracy because of the secular terms present in 
the expression of the relative position vector. Independently, Lawden [7], 
Tschauner and Hempel [8], and Tschauner [9] obtained the solution to the 
linearized equations of motion when the chief orbit is elliptic, but their solutions 
still involved secular terms and had singularities. The singularities in the Tschauner 
- Hempel equations were removed firstly by Carter [10] and by Yamanaka and 
Andersen [11]. Later, the formation flying concept began to be considered, and the 
problem of deriving equations for the relative motion with a long-term accuracy 
degree raised, together with the need to obtain a more accurate solution to the 
relative orbital motion problem [1]. Gim and Alfriend [12] used the state transition 
matrix in the study of the relative motion. 

The main goal was to express the linearized equations of motion with respect 
to the initial conditions, with applications in formation initialization and 
reconfiguration. Attempts to offer more accurate equations of motion starting from 
the nonlinear initial value problem that models the motion were made. Gurfil and 
Kasdin [13] derived closed-form expression of the relative position vector, but only 
when the reference trajectory is circular. Similar expressions for the law of relative 
motion starting from the nonlinear model are presented in [1], [14! 16]. The relative 
orbital motion problem was also studied from the point of view of the associated 
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differential manifold. Gurfil and Kholshevnikov [17] introduced a metric which 
helps to study the relative distance between Keplerian orbits. Gronchi [18], [19] 
also introduced a metric between two confocal Keplerian orbits and used this 
instrument in problems of asteroid and comet collisions. 

In 2007, Condurache and Martinusi [2], [3] offered the closed-form solution 
to the nonlinear unperturbed model of the relative orbital motion. The method led 
to closed form vectorial coordinate free expressions for the relative law of motion 
and relative velocity and it was based on an approach first introduced in 1995 [20]. 
It involves the Lie group of proper orthogonal tensor functions and its associated 
Lie algebra of skew-symmetric tensor functions. Then, the solution was 
generalized to the problem of the relative motion in a central force field [4] [21], 
[22]. An inedite solution to the Kepler problem by using the algebra of 
hypercomplex numbers was offered in [23]. Based on this solution and by using the 
hypercomplex eccentric anomaly, a unified closed-form solution to the relative 
orbital motion was determined [24]. The relative motion between the leader and the 
deputy is a six-degrees-of-freedom (6-DOF) motion which represents the coupling 
of the relative translational motion with the rotational one. In recent years, an 
increasing attention has been paid to the modeling of the 6-DOF motion of 
spacecraft [25! 27]. Also, controlling the relative pose of satellite formation is a 
very important research subject [5], [28]. The common approach is to consider the 
relative translational and rotational dynamics for the chief-deputy spacecraft 
formation to be modeled using vector and tensor formalism. 

The present approach offers a tensor procedure to obtain exact expressions 
for the relative law of motion and the relative velocity between two Keplerian 
confocal orbits. The solution is obtained by pure analytical methods and it holds for 
any chief and deputy trajectories, without involving any secular terms or 
singularities. The relative orbital motion is reduced, by an adequate change of 
variables, into the classic Kepler problem. It is proved that the relative orbital 
motion problem is super integrable. The tensor plays only a catalyst role, the final 
solution being expressed in a vectorial form. 

To obtain this solution, one must know only the inertial motion of the chief 
spacecraft and the initial conditions of the deputy satellite in the local-vertical-
local-horizontal (LVLH) frame. Both the relative law of motion and the relative 
velocity of the deputy are obtained, by using the tensor instrument that is 
developed in the first part of the paper. Another contribution is the expression of 
the solution to the relative orbital motion by using universal functions, in a 
compact and unified form. Also, a representation theorem is presented, this 
theorem allows the problem of finding the attitude of the Deputy in relation to 
LVLH to be solved as Euler fixed point classical problem. 
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2. MATHEMATICAL PRELIMI NARIES 

The key notions that are studied in this Section are proper orthogonal 
tensorial maps and a Sundman-like vectorial regularization, the latter introduced 
via a vectorial change of variable. The proper orthogonal tensorial maps are related 
with the skew-symmetric tensorial maps via the Poisson-Darboux equation. The 
results presented in this section appeared for the first time in [20]. The section 
related to orthogonal tensorial maps over a powerful instrument in the study of the 
motion with respect to a non-inertial reference frame.  

We denote  the set of maps defined on the set of real numbers !  with 

values in the set of proper orthogonal tensors .  

. (5) 

We denote  the set of maps defined on the set of real numbers  with 

values in the set of skew-symmetric tensors : 

 (6) 

We denote  to be the set of applications that can be on !  with values in 
the free vectors set with dimension 3, namely .  

Theorem 1: The initial value problem: 

 (7) 

has a unique solution  for any continuous map . 

Proof: Let  be the solution of (7) and denote by  its transpose. 
Computing 

 (8) 

it follows that: 

. (9) 

Since  is a continuous map, , it follows that  is a continuous 

map too. From Eq. (8) it results . Since , it 

follows that 
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 (10) 

therefore  is a proper orthogonal tensor map. 
Equation (7) represents the tensor form of the Poisson-Darboux equation [29], [30]. 
Its solution will be denoted . It models the rotation with instantaneous angular 

velocity  is the vector map associated to the skew-symmetric tensor ). The 

link between them is given by: , ; where  is the three-
dimensional linear space of free vectors and Ó Ó denotes the cross product. 
The inverse (in this case the transpose) of tensor  is denoted: 

. 
 

(11) 

Theorem 2. The tensor map  satisfies: 

1.  is invertible and ; 

2. ; 

3. ; 

4. ; 

5. , differentiable; 

6. . 

If vector  has fixed direction, given by the unit vector ;  with  a 

continuous real valued map, the Poisson-Darboux equation (6) has the explicit 
solution: 

, (12) 

where . 

Following from Eq ((11), if vector  is constant and nonzero, the solution 
to the Poisson-Darboux equation is written as: 

. (13) 
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We introduce a vectorial operator which is related to the angular velocity  
of the reference frame to whom an arbitrary vector is related. It is a derivation-like 
operator and its use will be revealed further.  

We define operator  by 

. (14) 

For an arbitrary vectorial map , it will hold: 

. (15) 

The next results present the properties of this operator, together with the link 

between  and . 

Lemma 1. The following affirmations hold true: 
1. ; 

2. ; 

3. , differentiable; 

4. ; 

5. ; 

6. ; 

7. ; 

8. . 

Lemma 2. Let  be a differential vectorial valued map such as: 

. (16) 

Then 

, (17) 

where  is the solution of the initial value problem (7). 

Proof. From  results . 

The solution of the Cauchy problem (13) is . 
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Remark 1. From Lemma 2 it results that if a vectorial map  satisfies 

, then vector  is the rotation with the angular velocity  of a constant 
. It will be useful in giving a geometrical interpretation for the prime 

integrals that occur in the two-body problem in the non-inertial reference frames. 

3. CLOSED-FORM SOLUTION  TO THE RELATIVE 
ORBITAL MOTION PROBL EM Ð TRANSLATION PAR T  

In this section we present the closed-form, coordinate-free exact solution to 
equation (1). In the initial value problem (1), we make the change of variable: 

, (18) 

where  is the solution of the initial value problem: 

 (19) 

After some algebra, it follows that: 

 (20) 

and furthermore: 

 (21) 

Using equations (1) and (19) we obtain: 
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, (24) 

, (25) 

where . 

From (18) and (11) we deduce: 

. (26) 

The solution to the relative orbital motion problem, described by the initial value 
problem (1) is: 

, (27) 

where  with , is the 

solution of equation (7) where  is the solution to the initial value problem: 

 (28) 

and the relative velocity may be computed as: 

. (29) 

This result shows a very interesting property of the relative orbital motion problem 
(1). We have proven that this problem is super-integrable, by reducing it to the 
classic Kepler problem (28). The solution of the relative orbital motion problem is 
expressed thus: 

 (30) 
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 (31) 

and " a Sudman-like independent universal variable that satisfies: 

. (32) 

Then, the solution to the initial value problem (28) may be expressed as: 

 (33) 

and the magnitude of the solution is: 

. (34) 

The velocity of the motion governed by equation (28) is: 

 (35) 
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 (37) 

where  is the true anomaly of the chief spacecraft and 

with  

The universal functions  are linked by a Kepler-like equation [31]: 

. (38) 

Equation (37) and (38) offer the closed-form compact solution to the relative 
orbital motion problem. They hold for all types of reference trajectories of the chief 
(elliptic, parabolic, hyperbolic) and deputy (elliptic, parabolic, hyperbolic, 
rectilinear). 

4. EXACT SOLUTION TO TH E RELATIVE ORBITAL 
MOTION PROBLEM - ROTATIONAL PART   

In this section we give a representation theorem for the tensor  
which parametrizes the rotation of the Deputy around its mass center, motion that 
is recovered from the initial value problem (4). 
For (4), consider the following change of variable: 
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. The result is 

equivalent with  or  
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 (41) 

where  is the in-body torque related to the mass center in the body frame 
of Deputy. Equation (41) is a Euler fixed point classic problem. If Q is the solution 
of (4) then:  

 (42) 

Making use of (39), results that . If the  operator is used the 

previous calculus is transformed into   . 
After multiplying the last expression by Q, we obtain the initial value problem:  

 (43) 

Using the variable change (39), the initial value problem (4) has been decoupled 
into two distinct initial value problems (41) and (43). Considering , a 

representation theorem is valid. 
Theorem 3. The solution of (4) results from the application of  to the 

solution of the classical Euler fixed point problem: 
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where  is the set of special orthogonal dual tensors and  is the unit 

orthogonal dual tensor. 
The internal structure of any orthogonal dual tensor  is illustrated in a 

series of results which were detailed in our previous work [34], [35], [40]. 
Theorem 4. (Structure Theorem). For any  a unique decomposition 

is viable:  
, (46) 

where  and  are called structural invariants. 

Taking into account the Lie group structure of  and the result presented 

in previous theorem, it can be concluded that any orthogonal dual tensor  

can be used globally parameterize displacements of rigid bodies. 
Theorem 5 For any orthogonal dual tensor  defined as in Eq. (46), a dual 

number  and a dual unit vector  can be computed to have 
the following equation [34], [35]: 

. (47) 

The parameters  and  are called the natural invariants  of . The unit dual 
vector  gives the PlŸcker representation of the Mozzi-Chalses axis [33], [41]. 
while the dual angle  contains the rotation angle  and the translated 
distance . 
The Lie algebra of the Lie group  is the skew-symmetric dual tensor set 

denoted by , where the internal mapping is 

. 

The link between the Lie algebra , the Lie group , and the exponential 

map is given by the following. 
Theorem 6. The mapping 

 

 
(48)  

is well defined and surjective. 
Any screw axis that embeds a rigid displacement can be parameterized by a 

unit dual vector, whereas the screw parameters (angle of rotation about the screw 
and the translation along the screw axis) can be structured as a dual angle. The 
computation of the screw axis is linked with the problem of finding the logarithm 
of an orthogonal dual tensor , which is a multifunction defined by: 
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(49) 

and is the inverse of Eq. (44). 
Based on Theorem 5 and Theorem 6, for any orthogonal dual tensor , a 

dual vector  can be computed and it represents the Euler dual 

vector, which embeds the screw axis and screw parameters. The form of  implies 

that . 

Also, if  , Theorem 5 and Theorem 6 can be used to uniquely recover 

the Euler dual vector , which is equivalent with computing . 

Next, weÕll introduce the isomorphism between the Lie group  and the Lie 

group  [42]. 

Theorem 7. (Isomorphism Theorem): The special Euclidean group  

and  are connected via the isomorphism of the Lie groups: 

, 

, 
(50) 

where , , . 

The Lie algebra and  are connected via the isomorphism of the Lie 

algebras: 

 (51) 

where , . 

Proof: For any , the map defined in Eq. (51) yields 

. 
 

(52) 

Let . Based on Theorem 4, which ensures a unique decomposition, we 

can conclude that the only choice for , such that  is . This 

underlines that  is a bijection and keeps all the internal operations, where  and 
 are denoted ast structural invariant of the orthogonal tensor . 
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For any , the mapping defined by Eq.(51) verifies the 

identity 

 (53) 

Also, for any , , there is only determined  such that 

.Thus,  is a bijective mapping. 

Remark 2: The inverse of  is 

, (54) 

where . 

6. FOUCAULT -LIKE PROPER TIES OF RIGID BODY 
MOTION IN ARBITRARY NON-INERTIAL FRAME  

To the authors' knowledge, in the field of astrodynamics there aren't many 
reports on how the motion of rigid body can be studied in arbitrary non-inertial 
frames. Next, we proposed a dual tensors-based model for the motion of the rigid 
body in an arbitrary non-inertial frame. The proposed method eludes the calculus 
of inertia forces that contributes to the rigid body relative state. So, the coordinate-
free state equation of the rigid body motion in an arbitrary non-inertial frame will 
be obtained. 
Let  and  be the dual orthogonal tensors which describe the motion of two 
rigid bodies relative to the inertial frame.  
If  is the orthogonal dual tensor which embeds the six degree of freedom relative 
orbital motion of rigid body D relative to rigid body C, then: 

. (55) 

Let  denote the dual angular velocity of the rigid body C and  the 
dual angular velocity of the rigid body D, both being related to inertial reference 
frame. In the following, the inertial motion of the rigid body C is considered to be 
known. If  is the dual angular velocity of the rigid body D relative to the rigid 
body C, then, conforming with (55): 

. (56) 

Considering  being the dual angular velocity vector of the rigid body D in the 
body frame, the dual form of the Euler equation given in [43] results that: 
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. (57) 

In (57) , where  the force applied in the mass centre and  is 
the torque. Also in (57),  represents the inertia dual operator, which is given by 

, where  is the inertia tensor of the rigid body D related to its 

mass center and  is the mass of the rigid body D. Combining 

 with (57) results: 

. (58) 

Considering that , the dual angular velocity vector can be computed 
from 

, (59) 
this through differentiation gives: 

. (60) 

If the previous equation is multiplied by , then  

, (61) 

which combined with  generates: 

. (62) 

After a few steps, equation (62) is transformed into 

, (63) 

which combined with (58) gives: 

. (64) 

Because , the final equation is: 

. (65) 
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is a compact form which can be used to model the 6-DOF relative motion problem. 
In the previous equation the state of the rigid body D in relation with the rigid body 
C is modelled by the dual tensor  and the dual angular velocities field . This 
initial value problem can be used to study the behavior of the rigid body D in 
relation with the reference frame attached to the rigid body C. In (66), all the 
vectors are represented in the body frame of C, which shows that the proposed 
solution is onboard and has the property of being coupled in  and . 
Next, we present a procedure that allows the decoupling of the proposed solution. 

Theorem 8. (Representation Theorem). The solution of (66) results from the 
application of the tensor  to the solution of the classical dual Euler fixed 

point problem: 

 (67) 

where 

, , 

and  itÕs the unique solution of the dual replica of Poisson-Darboux 

equation: 

 

Proof: 
In order to describe the solution to (66), we consider the following change of 
variable: 

. (68) 

This change of variable leads to 

. The result is 

equivalent with  or 

. (69) 
After some steps of algebraic calculus, from (68), (69) and (65), results that: 
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Where  is the dual torque related to the mass center in the body frame of 

the rigid body D and . Equation (70) is a dual Euler fixed 

point classic problem. 

For any , the solution of (66) emerges from 

 (71) 

Making use of (68) results that . If  operator used the previous 

calculus is transformed into . After 

multiplying the last expression by , we obtain the initial value problem: 

 (72) 

Using the variable change (68), the initial value problem (66) has been decoupled 
into two distinct initial value problems (70) and (72). 

Let  be the unique solution of: 

 (73) 

Considering , a representation theorem of the solution of Eq. (66) can 

be formulated. 

7. A DUAL TENSOR FORMUL ATION OF THE SIX DEG REE 
OF FREEDOM RELATIVE ORBITAL MOTION PROBL EM 

The results from the previous chapter will be used to study the six degrees of 
freedom relative orbital motion problem using dual algebra. 
This problem is also quite important, due to its numerous applications: spacecraft 
formation flying, rendezvous operations, distributed spacecraft missions [1], [5], 
[10! 12], [26], [44]. 

The model of the full-body relative motion consists in two spacecraft flying 
in Keplerian orbits due to the influence of the same gravitational attraction center 
(Figure 1). The main problem is to determine the pose of the Deputy satellite with 
respect to a reference frame originated in the Leader satellite center of mass. This 
non-inertial reference frame, traditionally named LVLH (Local-Vertical-Local- 
Horizontal). The angular velocity of the LVLH is given by the vector , which 
has the expression: 
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, (74) 

where vector  is: 

, (75) 

where  is the conic parameter,  is the angular momentum of the Chief,  
 being the true anomaly and  is the eccentricity of the Chief. 

We propose dual tensors-based model for the motion and the pose for the mass 
center of the Deputy in relation to LVLH. Both the Chief satellite and the Deputy 
satellite can be considered rigid bodies. 

Furthermore, the time derivative of  is: 

. (76) 

In order to a easier to read the list of notations, for  there will be used 
the followings: 

, (77) 

. (78) 

Where  is the unity vector of the X-axis from LVLH.  

The full-body relative orbital motion is described by the Eq.(66) where the dual 
angular velocity of the Chief satellite is: 

 (79) 
and the dual torque related to the mass center of Deputy satellite is: 

 (80) 

The representation theorem (Theorem 8) is applied in this case using the 
conditions (76)-(79), the solution of the Poisson-Darboux problem (73) is: 

. (81) 
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Theorem 9. (Representation Theorem of the full body relative orbital 
motion). The solution of (66) results from the application of the tensor  from 

(81) to the solution of the classical dual Euler fixed point problem (67). 

7.1. The rotational and translational parts of the relative orbital motion 

Consider first the real part of (66). This leads to an initial value problem: 

 (82) 

which has the solution , the real tensor  being the attitude of Deputy in 

relation to LVLH. In (82),  is the angular velocity of the Deputy in relation to 
LVLH,  is the angular velocity of LVLH,  is the resulting torque of the forces 
applied on the Deputy in relation to its mass center,  is the inertia tensor of the 
Deputy in relation to its mass center,  is the angular velocity of Deputy in 
respect to LVLH at time  and  is the orientation of Deputy in respect to 
LVLH at time . 

Consider now the dual part of Eq. (66). Taking into account the internal 
structure of , which is given by (47), after some basic algebraic calculus we 
obtain a second initial value problem that models the translation of the Deputy 
satellite mass center with respect to the LVLH reference frame: 

 (83) 

where  is the gravitational parameter of the attraction center and  
represent the relative position and relative velocity vectors of the mass center of the 
Deputy spacecraft with respect to LVLH at the initial moment of time . 
Based on the representation Theorem 9, the following theorem results. 

Theorem 10. The solutions to problems (82) and (83) are given by  
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where  and  are the solutions of the the classical Euler fixed point problem 
and, respectively, Kepler's problem: 

 (85) 

and 

 (86) 

where  

 (87) 

and  is given by Eq. (75). 
Remark 3: The result displayed in Theorem 10 gives a very meaningful 

insight on the motion of any rigid body with respect to a non-inertial frame. A 
straightforward method to approach its motion is revealed as follows: (i) The 
problem is solved in an inertial frame, that is our non-inertial frame ÒfrozenÓ at the 
initial moment of time; (ii) The solution to the non-inertial problem is obtained by 
applying tensor  to the solution obtained at the previous step (i). 

This insight reveals that in fact any rigid body motion with respect to a non-inertial 
frame is a Foucault pendulum-like motion, the same type that is comprehensively 
studied in [22]. 

Remark 4: The problems (82) and (83) are coupled because, in general case, 
the torque  depends of the position vector . 
The exact closed form, coordinate-free, solution of the translational motion can be 
found in [2! 4], [22], [45]. 

8. CONCLUSION 

The present paper develops new methods for recovering a solution property 
to the full body relative orbital motion problem in a Keplerian field. A 
representation theorem is provided for the full body initial value problem, using 
dual Lie algebra of dual vectors. For this, the isomorphism between the Lie group 
of the rigid body displacements and the Lie group of the orthogonal dual tensors is 
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used. Furthermore, the representation theorems for the rotation part and translation 
part of the six-degree-of-freedom relative motion in a non-inertial reference frame 
are obtained. The core result of the paper offers a meaningful insight and a natural 
geometrical interpretation of the motion, namely that it is in fact derived from the 
motion in a well-defined inertial frame which is seen through a transform that 
depends solely on an orthogonal tensor that models the behavior of the non-inertial 
frame. The obtained results interest the domains of the spacecraft formation flying, 
rendezvous operation, autonomous mission and control theory. 
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