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Abstract. Increasing interest in optimal low-thrust orbital transfers was triggered
in the last decade by technological progress in electric propulsion and by the
ambition of efficiently leveraging on orbital perturbations to enhance the ma-
neuverability of small satellites. This paper focuses on time optimal disposal
maneuvers using solar radiation as a propulsive means. After formulating the
necessary conditions for optimality, the numerical solution of the two-point
boundary value problem is facilitated by averaging the Hamiltonian with re-
spect to both satellite and Sun longitudes. Initial conditions for the osculating
trajectory are finally inferred via a near-identity transformation that carefully
approximate the quasi-periodic oscillations of both state and adjoint variables.
Classical approaches for the assessment of this transformation are shown to
be inadequate to the problem at hand because of the particular structure of the
Hamiltonian.
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1. INTRODUCTION
The development of miniaturized satellite systems and the availability of low-

cost launchers facilitated the access to space. Hence, the number of objects orbiting
around the Earth experienced exponential growth during the last decade. Because
of the modest maneuverability capabilities of small satellites, innovative techniques
exploiting orbital perturbations caught on to fulfill the 25 year requirement for the
end-of-life disposal of satellites whose trajectories cross the low-Earth orbit (LEO)
region [1].

The plain deployment of a sail leveraging on solar radiation pressure (SRP) to
lower the perigee of the orbit is among them. This passive strategy was mainly studied
from a dynamical systems point of view, and its main drawback is the arguably long
time required to achieve the disposal [2]. In addition, conditions on the minimum
area-to-mass ratio and on the initial orbital elements need to be satisfied to exploit
these strategies [3]. Controlling the orientation of the sail with respect to the Sun
direction may overcome these issues. Hence, the problem is tackled from a control
perspective in this paper in order to gain insight into how the sail should be oriented
to minimize the maneuvering time.
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Necessary conditions for optimality of these disposal maneuvers are detailed
in Section 2. Solving the resulting two-point boundary value problem (TPBVP) is
challenging because of the fast-oscillating nature of orbital dynamics and of the
bang-bang structure of the optimal control action.

A simplification of the problem can be achieved by averaging the Hamiltonian
of the extremal flow with respect to both satellite and Sun longitudes. Although
this possibility is appealing, the Hamiltonian at hand is not in the classical form of
fast-oscillating systems. In addition, time optimal disposal trajectories are shown to
be characterized by two bang events per orbit, so that discontinuities of the vector
field occur at very fast rate. These two considerations make questionable the rigorous
exploitation of averaging theory in this problem. Nonetheless, trajectories of the
original system can be well approximated by their averaged counterpart if boundary
conditions of the adjoint variables are adequately transformed [4]. We discuss this
transformation in detail in Section 3, and we emphasize fundamental differences with
respect to well-known mean-to-osculating transformations of uncontrolled motion
[5, 6, 7]. In particular, these classical approaches are inadequate when applied to the
reconstruction of short-period variations of the adjoints to slow variables because of
the peculiar form of their equations of motion.

The methodology is finally applied to the disposal of a Satellite in a highly
eccentric orbit. Trajectories of the doubly-averaged system are drastically streamlined,
so that the averaged counterpart of the TPBVP is reasonably easy to solve.

2. TIME OPTIMAL SOLAR-SAIL ASSISTED DE-ORBITING

2.1. Formulation of the problem

We consider the optimal control problem
min
u(t)

t f subject to (1)

I(0) = I0 (2)

ϕ(0) = ϕ0 (3)

rp (I(t f )) = r f (4)
d I
d t

= ε [ f 0 (I,ϕ)+ f u (I,ϕ)u] (5)

dϕ

d t
= ω (I)+ ε [g0 (I,ϕ)+gu (I,ϕ)u] (6)

0≤ u(t) ≤ 1 ∀t ∈ [0, t f ] (7)
Here, t f denotes the maneuvering time, I are the slowly-varying equinoctial
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elements [8] of the orbit, namely

I =



a
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)
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cosΩ
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2

sinΩ


,

where a, e, i, ω , and Ω denote the orbital semi-major axis, eccentricity, inclination,
argument of perigee (AoP), and right ascension of the ascending node (RAAN),
respectively. The vector ϕ defined on the two-dimensional torus T2 denotes satellite
and Sun mean longitudes (ϕ1 and ϕ2, respectively), which are referred to as fast
variables in the reminder.

Initial conditions are expressed by Eqs. (2) and (3), whereas disposal conditions at
the end of the maneuver are modeled by Eq. (4). Specifically, de-orbiting is achieved
when the perigee radius,

rp(I) =
I1

1+
√

I2
2 + I2

3

,

is lowered down the prescribed value r f , which guarantees the imminent re-entry in
the atmosphere of the satellite.

The motion of I and ϕ is governed by Eqs. (5) and (6). Here, all functions are
periodic with respect to ϕ , and ε is a formal small parameter that is introduced to
distinguish between slow and fast dynamics. The components of the frequency vector,
ω(I), are the mean motion of the satellite,

ω1 =

√
µ

(
1− I2

2 − I2
3

I1

)3

,

where µ is the gravitational parameter of the Earth, and the mean motion of the Sun,
ω2. The orbit of the Sun is assumed to be Keplerian, so that ω2 is constant. The
modeling of f 0, f 1, g0, and g1 is based on the following additional assumptions:

• Eclipses are ignored;

• SRP is toward the opposite direction of the Sun position vector, s(ϕ2), and
proportional to the cross-sectional area projected in the direction of the Sun
(cannonball model), as shown in Figure 1.

• The satellite is modeled as a flat surface (sail) with area-to-mass ratio
A
m

, so
that the force per mass unit due to the radiation pressure is

f SRP(I,ϕ,u) =−
c

‖s− r‖2
A
m

ŝ︸ ︷︷ ︸
f max

SRP

u,
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Fig. 1 – Schematic representation of the dynamical problem.

where the constant c is the radiation pressure at 1 AU, r(I,ϕ1) is the position
vector, ŝ =

s
‖s‖

is the unit vector pointing toward the Sun direction, and u is the

control variable, which can be physically interpreted as u = |n · ŝ|, with n̂ being
the unit vector orthogonal to the sail.

• The only perturbation considered other than SRP is the third-body attraction of
the Sun,

f S(I,ϕ) = µS

(
s− r

‖s− r‖3 −
s

‖s‖3

)
,

where µS denotes the gravitational constant of the Sun.

Hence, functions f 0, f 1, g0 and g1 are given by
f0 = F(I,ϕ) f S, f 1 = F(I,ϕ) f max

SRP,

g0 = G(I,ϕ) f S g1 = G(I,ϕ) f max
SRP.

Matrix-valued functions F(I,ϕ) and G(I,ϕ) are straightforwardly deduced from
the Gauss variational equations (GVE) for equinoctial elements in [8], but they are
not detailed herein for the sake of conciseness.

2.2. Necessary conditions for optimality

Denote by pI and pϕ the adjoints to slow and fast variables, respectively. The
application of the infamous Pontryagin maximum principle (PMP) [9] yields the
Hamiltonian of the extremal flow associtated to Eqs (5)–(7)

H = pϕ ·ω(I)+ εK
(
I, pI,ϕ, pϕ

)
, (8)
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where the function K that characterizes the slow component of the Hamiltonian is

K = H0 +
H1 + |H1|

2
, (9)

and H j, for j = 0,1, are defined as
H j = f j(I, ϕ) · pI +g j(I, ϕ) · pϕ .

The optimal control law is bang-bang, and it is determined by the sign of H1,
namely

uopt (I, pI,ϕ, pϕ

)
=

1
2

(
1+

H1

|H1|

)
. (10)

Necessary conditions for optimality consist of the flow associated to the Hamilto-
nian of Eq. (8),

d I
d t

= ε
∂ K
∂ pI

,

dϕ

d t
= ε

∂ K
∂ pϕ

+ω(I),

d pI

d t
=−ε

∂ K
∂ I
− pϕ

∂ ω

∂ I
,

d pϕ

d t
=−ε

∂ K
∂ ϕ

,

(11)

of the transversality conditions at time t f

pI2 +
I1 pI1

1+
√

I2
2 + I2

3

I2√
I2
2 + I2

3

= 0

pI3 +
I1 pI1

1+
√

I2
2 + I2

3

I3√
I2
2 + I2

3

= 0

pI j = 0 for j = 4,5,

pϕ = 0,

(12)

and of Eqs. (2) and (3).
Solutions of the necessary conditions are obtained by finding triads

(
t f , pI0, pϕ 0

)
such that trajectories of System (13) with initial conditions I(0) = I0, pI(0) = pI0,
ϕ(0) = ϕ0, and pϕ 0 = 0 satisfy the Eq. (12) at time t f . Finally, because of the
homogeneity of the Hamiltonian, the level set H = ε is imposed. This normalizing
condition is arbitrary and not unique.

3. THE AVERAGED CONTROL SYSTEM

Applying averaging theory to System (13) is questionable because the structure of
this vector field differs from the one of classical fast-oscillating system. Specifically,

the equation of motion of pI , includes the term pϕ

∂ ω

∂ I
that may possibly be of order
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larger than ε . Hence, adjoints to slow variables are not necessary slow themselves.
Recent contributions showed that adjoints to fast variables are systematically

ε-small for any extremal trajectory with free phases at boundaries, and, as such,
d pI

d t
= O (ε) when restrained to these trajectories, which justifies the averaging of the

extremal flow [4].
Denote by K the averaged counterpart of the functional defined in Eq. (9), namely

K =
1

4π2

∫
T2

K (I, pI,ϕ,0) dϕ.

Here, pϕ = 0 because the averaging is carried out by considering the limit of the
function as ε approaches zero. Averaging Eq. (13) yields

d I
d t

= ε
∂ K
∂ pI

,

dϕ

d t
= ε

∂ K
∂ pϕ

+ω
(
I
)
,

d pI

d t
=−ε

∂ K
∂ I
− pϕ

∂ ω

∂ I
,

d pϕ

d t
= 0.

(13)

Adjoints to the fast variables are indeed constant along averaged extremal trajectories.
A near-identity transformation of the initial adjoints to fast variables is mandatory

to have trajectories of the original and averaged systems that remain close for long
time, as discussed in [4], namely

pϕ = pϕ +ν pϕ

(
I,ϕ, pI

)
.

This transformation is aimed at obtaining unbiased oscillations of pϕ with respect to
pϕ .

Assuming that I0 is out of any resonant zone of order lower than N > cN log
1
ε

,
then ν pϕ

is given by

ν pϕ
=−i ∑

0<|k|≤N

eik·ϕ

k ·ω
(
I
) [−∂ K

∂ ϕ

](k)
, (14)

where
[
−∂ K

∂ ϕ

](k)
denote the coefficients of the Fourier expansion of−∂ K

∂ ϕ
. To obtain

exponential convergence of this series, the absolute value in (9) is approximated by

|H1| ≈
√

H2
1 +η−

√
η , (15)

where η is a small parameter. We note that the approximation of Eq. (15) is obtained
by adding the penalty function

−
√

η log
(
1−u2)

to the cost function of the optimal control problem.
Given the averaged state, Equation (14) establishes a mapping between ϕ and pϕ .
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Fig. 2 – Trajectory of the perigee altitude.

Because ν pϕ
has zero mean, there exist ϕ0 ∈ T2 such that

pϕ − pϕ = ν pϕ

(
I, pI,ϕ0

)
= 0.

Restoring fast-variations of slow variables and their adjoints at initial time is
less important than the transformation of pϕ . However, the drift between averaged
and osculating trajectories can be further reduced by doing so. Direct application
of classical perturbation theories to develop this transformation, e.g., Eq. (14) is not
sufficient to reconstruct short-period variations of pI , as discussed in [4]. In fact, the
transformation of pI should be carried out by including ν pϕ

in the Fourier expansion,
namely

ν pI =−i ∑
0<|k|≤N

eik·ϕ

k ·ω
(
I
) [−(pϕ +ν pϕ

) ∂ ω

∂ I
− ∂ K

∂ I

](k)
. (16)

This nested transformation is capable of properly reconstructing short-period
variations of the adjoints to slow variables.

4. NUMERICAL SIMULATION

The disposal of an object in a highly eccentric orbit is discussed in this section.
Table 1 lists the parameters used in this case study.

The optimal control problem is solved via a simple shooting algorithm by approxi-
mating the dynamics of the original system with its averaged counterpart. The near
identity transformation introduced in Section 3 is used to modify boundary conditions.
The numerical solution1 converges in few iterations regardless the choice of the initial

1Matlab’s numerical solver fsolve with default tolerances was used to achieve the solution.



270 Lamberto Dell’Elce 8

Table 1
Simulation parameters

Constants

Area-to-mass ratio,
A
m

5
m2

kg
Radiation pressure constant, c 1.0205 ·1017 N

Earth’s gravitational parameter, µ 3.986 ·105 km3

s2
Earth’s equatorial radius, rE 6378.137 km
Sun’ orbit semi-major axis 1.4960 ·108 km
Sun’ orbit eccentricity 0.017
Sun’ orbit inclination 23.44 deg
Sun’ orbit AoP 282.77 deg
Sun’ orbit RAAN 0 deg

Initial conditions
Sun’ orbit semi-major axis 1.4960 ·108 km
Semi-major axis 26000 km
Eccentricity 0.7
Inclination 65 deg
AoP 0 deg
RAAN 0 deg
Satellite longitude 0 deg
Sun longitude 0 deg

Final conditions
Perigee radius, r f 250 km+ rE

Fig. 3 – Control variable (original system).
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Fig. 4 – Beginning of the trajectory of the adjoint to satellite longitude.

guess thanks to the extremely smoothed and nearly straight trajectories of the averaged
system, as shown in Figure 2 (solid blue line). The near identity transformation is fi-
nally capable of adequately restoring short-period oscillations. This claim is supported
by the good matching between the blue dotted and red dashed trajectories.

Figure 3 depicts the value of the control variable throughout the entire maneuver
(we emphasize that ϕ2 is proportional to time). Two bang events characterize every
orbital revolution. Obtaining a solution with such an involved control structure without
leveraging on the simplified dynamics of the averaged system would be extremely
difficult even by using direct approaches (e.g., pseudospectral techniques).

Finally, short period oscillations of the adjoint to satellite longitude, pϕ1 at the be-
ginning of the maneuver are illustrated in Figure 4. The introduction of the smoothing
parameter, η , in Eq. (15) is mandatory to adequately approximate these variations.
Setting this parameter to zero would jeopardize the convergence of the Fourier coef-
ficients in Eq. (14) and would result in the inconsistent reconstruction of the short
period variations (dash-dotted green curve).

5. CONCLUSION

This paper discussed the realization propellantless time optimal disposal maneu-
vers of satellites by leveraging on the solar radiation pressure perturbation. The numer-
ical solution of this problem is particularly challenging because of the fast-oscillating
nature of orbital dynamics and of the large number of bang events characterizing the
optimal trajectory. We showed that the problem can be greatly simplified by averaging



272 Lamberto Dell’Elce 10

the extremal flow with respect to satellite and Sun longitudes. Future work will be
aimed at increasing the fidelity of the dynamical system by modeling eclipses and
perturbations due to Earth’s oblateness.

Received on December 2020
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